Add like
Add dislike
Add to saved papers

Stability analysis of fractional difference equations with delay.

Chaos 2024 May 2
Long-term memory is a feature observed in systems ranging from neural networks to epidemiological models. The memory in such systems is usually modeled by the time delay. Furthermore, the nonlocal operators, such as the "fractional order difference," can also have a long-time memory. Therefore, the fractional difference equations with delay are an appropriate model in a range of systems. Even so, there are not many detailed studies available related to the stability analysis of fractional order systems with delay. In this work, we derive the stability conditions for linear fractional difference equations with an arbitrary delay τ and even for systems with distributed delay. We carry out a detailed stability analysis for the cases of single delay with τ=1 and τ=2. The results are extended to nonlinear maps. The formalism can be easily extended to multiple time delays.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app