Add like
Add dislike
Add to saved papers

Switching CO 2 Electroreduction toward Ethanol by Delocalization State-Tuned Bond Cleavage.

The electrochemical CO2 reduction reaction by copper-based catalysts features a promising approach to generate value-added multicarbon (C2+ ) products. However, due to the unfavored formation of oxygenate intermediates on the catalyst surface, the selectivity of C2+ alcohols like ethanol remains unsatisfactory compared to that of ethylene. The bifurcation point (i.e., the CH2 ═CHO* intermediate adsorbed on Cu via a Cu-O-C linkage) is critical to the C2+ product selectivity, whereas the subsequent cleavage of the Cu-O or the O-C bond determines the ethanol or ethylene pathway. Inspired by the hard-soft acid-base theory, in this work, we demonstrate an electron delocalization tuning strategy of the Cu catalyst by a nitrene surface functionalization approach, which allows weakening and cleaving of the Cu-O bond of the adsorbed CH2 ═CHO*, as well as accelerating hydrogenation of the C═C bond along the ethanol pathway. As a result, the nitrene-functionalized Cu catalyst exhibited a much-enhanced ethanol Faradaic efficiency of 45% with a peak partial current density of 406 mA·cm-2 , substantially exceeding that of unmodified Cu or amide-functionalized Cu. When assembled in a membrane electrode assembly electrolyzer, the catalyst presented a stable CO2 -to-ethanol conversion for >300 h at an industrial current density of 400 mA·cm-2 .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app