Add like
Add dislike
Add to saved papers

Oxygen Atom from Carbonyl Group as an Important Binding Agent to the G-Quadruplex - Study Case of Flavonoids.

ChemPlusChem 2024 May 8
In the field of anticancer therapy study it is of great interest to find effective G-quadruplex ligands which may be of potential use in medical treatment or cancer prevention. Since among the compounds of natural origin, flavonoids have attracted notable attention because of their unique properties and promising therapeutic applications, an interesting question was to identify the flavonoid structural features that could provide effective binding properties toward G-quadruplex. By using electrospray ionization mass spectrometry, followed by the survival yield method, it has been shown that the flavonoid molecules which contain an available C4=O carbonyl group form more stable adducts with G-tetrads than the other ones. Molecular docking has shown that C4=O carbonyl group can be a source of hydrogen bonds and/or π-stacking interactions. Therefore, the flavonoid molecules which contain an available C4=O carbonyl group can be regarded as good binders of G-quadruplexes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app