Add like
Add dislike
Add to saved papers

Enhancing Predictions of Drug Solubility through Multidimensional Structural Characterization Exploitation.

Solubility is not only a significant physical property of molecules but also a vital factor in smallmolecule drug development. Determining drug solubility demands stringent equipment, controlled environments, and substantial human and material resources. The accurate prediction of drug solubility using computational methods has long been a goal for researchers. In this study, we introduce MSCSol, a solubility prediction model that integrates multidimensional molecular structure information. We incorporate a graph neural network with geometric vector perceptrons (GVP-GNN) to encode 3D molecular structures, representing spatial arrangement and orientation of atoms, as well as atomic sequences and interactions. We also employ Selective Kernel Convolution combined with Global and Local attention mechanisms to capture molecular features context at different scales. Additionally, various descriptors are calculated to enrich the molecular representation. For the 2D and 3D structural data of molecules, we design different data augmentation strategies to enhance generalization ability and prevent the model from learning irrelevant information. Extensive experiments on benchmark and independent datasets demonstrate MSCSol's superior performance. Ablation studies further confirm the effectiveness of different modules. Interpretability analysis highlights the importance of various atomic groups and substructures for solubility and verifies that our model effectively captures functional molecular structures and higher-order knowledge. The source code and datasets are freely available at https://github.com/ZiyuFanCSU/MSCSol.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app