Add like
Add dislike
Add to saved papers

Development of a Selective and Stable Antimicrobial Peptide.

Antimicrobial peptides (AMPs) are presented as potential scaffolds for antibiotic development due to their desirable qualities including broad-spectrum activity, rapid action, and general lack of susceptibility to current resistance mechanisms. However, they often lose antibacterial activity under physiological conditions and/or display mammalian cell toxicity, which limits their potential use. Identification of AMPs that overcome these barriers will help develop rules for how this antibacterial class can be developed to treat infection. Here we describe the development of our novel synthetic AMP, from discovery through in vivo application. Our evolved AMP, DTr18-dab, has broad-spectrum antibacterial activity and is nonhemolytic. It is active against planktonic bacteria and biofilm, is unaffected by colistin resistance, and importantly is active in both human serum and a Galleria mellonella infection model. Several modifications, including the incorporation of noncanonical amino acids, were used to arrive at this robust sequence. We observed that the impact on antibacterial activity with noncanonical amino acids was dependent on assay conditions and therefore not entirely predictable. Overall, our results demonstrate how a relatively weak lead can be developed into a robust AMP with qualities important for potential therapeutic translation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app