Add like
Add dislike
Add to saved papers

Neurochemical and Neurophysiological Effects of Intravenous Administration of N,N -dimethyltryptamine in Rats.

bioRxiv 2024 April 23
UNLABELLED: N , N -dimethyltryptamine (DMT) is a serotonergic psychedelic that is being investigated clinically for the treatment of psychiatric disorders. Although the neurophysiological effects of DMT in humans are well-characterized, similar studies in animal models as well as data on the neurochemical effects of DMT are generally lacking, which are critical for mechanistic understanding. In the current study, we combined behavioral analysis, high-density (32-channel) electroencephalography, and ultra-high-performance liquid chromatography-tandem mass spectrometry to simultaneously quantify changes in behavior, cortical neural dynamics, and levels of 17 neurochemicals in medial prefrontal and somatosensory cortices before, during, and after intravenous administration of three different doses of DMT (0.75 mg/kg, 3.75 mg/kg, 7.5 mg/kg) in male and female adult rats. All three doses of DMT produced head twitch response with most twitches observed after the low dose. DMT caused dose-dependent increases in serotonin and dopamine levels in both cortical sites along with a reduction in EEG spectral power in theta (4-10 Hz) and low gamma (25-55 Hz), and increase in power in delta (1-4 Hz), medium gamma (65-115), and high gamma (125-155 Hz) bands. Functional connectivity decreased in the delta band and increased across the gamma bands. In addition, we provide the first measurements of endogenous DMT in these cortical sites at levels comparable to serotonin and dopamine, which together with a previous study in occipital cortex, suggests a physiological role for endogenous DMT. This study represents one of the most comprehensive characterizations of psychedelic drug action in rats and the first to be conducted with DMT.

SIGNIFICANCE STATEMENT: N , N -dimethyltryptamine (DMT) is a serotonergic psychedelic with potential as a tool for probing the neurobiology of consciousness and as a therapeutic agent for psychiatric disorders. However, the neurochemical and neurophysiological effects of DMT in rat, a preferred animal model for mechanistic studies, are unclear. We demonstrate that intravenous DMT caused a dose-dependent increase in serotonin and dopamine in medial prefrontal and somatosensory cortices, and simultaneously increased gamma functional connectivity. Similar effects have been shown for other serotonergic and atypical psychedelics, suggesting a shared mechanism of drug action. Additionally, we report DMT during normal wakefulness in two spatially and functionally distinct cortical sites - prefrontal, somatosensory - at levels comparable to those of serotonin and dopamine, supporting a physiological role for endogenous DMT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app