Add like
Add dislike
Add to saved papers

In situ cell condensation-based cartilage tissue engineering via immediately implantable high-density stem cell core and rapidly degradable shell microgels.

bioRxiv 2024 April 26
Formation of chondromimetic human mesenchymal stem cells (hMSCs) condensations typically required in vitro culture in defined environments. In addition, extended in vitro culture in differentiation media over several weeks is usually necessary prior to implantation, which is costly, time consuming and delays clinical treatment. Here, this study reports on immediately implantable core/shell microgels with a high-density hMSC-laden core and rapidly degradable hydrogel shell. The hMSCs in the core formed cell condensates within 12 hours and the oxidized and methacrylated alginate (OMA) hydrogel shells were completely degraded within 3 days, enabling spontaneous and precipitous fusion of adjacent condensed aggregates. By delivering transforming growth factor-β1 (TGF-β1) within the core, the fused condensates were chondrogenically differentiated and formed cartilage microtissues. Importantly, these hMSC-laden core/shell microgels, fabricated without any in vitro culture, were subcutaneously implanted into mice and shown to form cartilage tissue via cellular condensations in the core after 3 weeks. This innovative approach to form cell condensations in situ without in vitro culture that can fuse together with each other and with host tissue and be matured into new tissue with incorporated bioactive signals, allows for immediate implantation and may be a platform strategy for cartilage regeneration and other tissue engineering applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app