Add like
Add dislike
Add to saved papers

A model with multiple intracranial aneurysms: possible hemodynamic mechanisms of aneurysmal initiation, rupture and recurrence.

BACKGROUND: Hemodynamic factors play an important role in aneurysm initiation, growth, rupture, and recurrence, while the mechanism of the hemodynamic characteristics is still controversial. A unique model of multiple aneurysms (initiation, growth, rupture, and recurrence) is helpful to avoids the confounders and further explore the possible hemodynamic mechanisms of aneurysm in different states.

METHODS: We present a model with multiple aneurysms, and including the states of initiation, growth, rupture, and recurrence, discuss the proposed mechanisms, and describe computational fluid dynamic model that was used to evaluate the likely hemodynamic effect of different states of the aneurysms.

RESULTS: The hemodynamic analysis suggests that high flow impingement and high WSS distribution at normal parent artery was found before aneurysmal initiation. The WSS distribution and flow velocity were decreased in the new sac after aneurysmal growth. Low WSS was the risk hemodynamic factor for aneurysmal rupture. High flow concentration region on the neck plane after coil embolization still marked in recanalized aneurysm.

CONCLUSIONS: Associations have been identified between high flow impingement and aneurysm recanalization, while low WSS is linked to the rupture of aneurysms. High flow concentration and high WSS distribution at normal artery associated with aneurysm initiation and growth, while after growth, the high-risk hemodynamics of aneurysm rupture was occurred, which is low WSS at aneurysm dome.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app