Add like
Add dislike
Add to saved papers

A novel ballistic model for the subthreshold behavior of nanosheet transistors.

Nanotechnology 2024 May 7
A novel ballistic model for the subthreshold current of nanosheet transistors is successfully developed based on the Landauer approach with the three-dimensional number of channels. The ballistic threshold voltage can also be achieved through the calculated free charge density induced by the three-dimensional density-of-states equal to the substrate doping concentration. It indicates that under the low drain voltage corresponding to the fermi distribution function, the subthreshold current is mainly governed by the low contact potential. However, under the high drain voltage corresponding to the fermi distribution function, the thermal voltage, instead of the contact potential between the source and drain, initiates the subthreshold current. Besides subthreshold current and threshold voltage, the ballistic conductance and subthreshold swing are also revealed in the subthreshold conduction. It indicates that the thin silicon, thin gate oxide, heavy substrate doping density, and high work function will alleviate the ballistic effects, decrease the subthreshold current/swing, and increase the threshold voltage/ballistic resistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app