Add like
Add dislike
Add to saved papers

Chiral Covalent Organic Framework Films with Enhanced Photoelectrical Performances.

The desirable superimposed stacking of two-dimensional covalent organic frameworks (2D COFs) benefits out-of-plane charge transfer, whereas the actual stacking deviation cannot leverage the potential of 2D COFs for optoelectrical applications. Herein, we report a chirality-induced strategy to control the parallel AA-stacking sequence for the β-ketoenamine-linked COF film supported on a FTO substrate. The resulting chiral modules are periodically distributed at the framework node, ensuring identical mirrored configurations of layers for parallel stacking. Such unique architectonics exhibit the prolonged charge carrier lifetime, fast charge-transfer dynamics, and ultrahigh electron collection efficiency, thereby allowing for the excellent photocurrent response of 38 μA/cm2 at 0.25 V (vs RHE). The origin of superior performances lies in the intensified exciton gradient distribution and electron density for photoinduced electron-hole dissociation and charge transfer, in stark contrast to achiral analogues. This study highlights the stacking sequence regulated by chiral nanoarchitectonics and promises great potential of chiral COFs in photoelectrical catalysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app