Add like
Add dislike
Add to saved papers

Deep learning based automatic segmentation of the Internal Pudendal Artery in definitive radiotherapy treatment planning of localized prostate cancer.

BACKGROUND AND PURPOSE: Radiation-induced erectile dysfunction (RiED) commonly affects prostate cancer patients, prompting clinical trials across institutions to explore dose-sparing to internal-pudendal-arteries (IPA) for preserving sexual potency. IPA, challenging to segment, isn't conventionally considered an organ-at-risk (OAR). This study proposes a deep learning (DL) auto-segmentation model for IPA, using Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) or CT alone to accommodate varied clinical practices.

MATERIALS AND METHODS: A total of 86 patients with CT and MRI images and noisy IPA labels were recruited in this study. We split the data into 42/14/30 for model training, testing, and a clinical observer study, respectively. There were three major innovations in this model: 1) we designed an architecture with squeeze-and-excite blocks and modality attention for effective feature extraction and production of accurate segmentation, 2) a novel loss function was used for training the model effectively with noisy labels, and 3) modality dropout strategy was used for making the model capable of segmentation in the absence of MRI.

RESULTS: Test dataset metrics were DSC 61.71 ± 7.7 %, ASD 2.5 ± .87 mm, and HD95 7.0 ± 2.3 mm. AI segmented contours showed dosimetric similarity to expert physician's contours. Observer study indicated higher scores for AI contours (mean = 3.7) compared to inexperienced physicians' contours (mean = 3.1). Inexperienced physicians improved scores to 3.7 when starting with AI contours.

CONCLUSION: The proposed model achieved good quality IPA contours to improve uniformity of segmentation and to facilitate introduction of standardized IPA segmentation into clinical trials and practice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app