Add like
Add dislike
Add to saved papers

Association between antioxidant metabolites and N-terminal fragment brain natriuretic peptides in insulin-resistant individuals.

OBJECTIVES: Oxidative stress plays a pivotal role in the development of metabolic syndrome, including heart failure and insulin resistance. The N-terminal fragment of brain natriuretic peptide (NT-proBNP) has been associated with heightened oxidative stress in heart failure patients. Yet, its correlation with insulin resistance remains poorly understood. Our objective is to investigate the association between oxidative stress markers and NT-proBNP levels in insulin-resistant individuals.

METHODS: In this cross-sectional study involving 393 participants from the Qatar Biobank, clinical and metabolic data were collected, and the association between NT-proBNP and 72 oxidative stress metabolites was compared between insulin-sensitive and insulin-resistant individuals.

RESULTS: Our results showed significantly lower NT-proBNP levels in insulin-resistant individuals (median = 17 pg/ml; interquartile range = 10.3-29) when compared to their insulin-sensitive counterparts (median = 31 pg/ml; interquartile range = 19-57). Moreover, we revealed notable associations between NT-proBNP levels and antioxidant metabolic pathways, particularly those related to glutathione metabolism, in insulin-resistant, but not insulin-sensitive individuals.

CONCLUSION: The significant decrease in NT-proBNP observed in individuals with insulin resistance may be attributed to a direct or indirect enhancement in glutathione production, which is regarded as a compensatory mechanism against oxidative stress. This study could advance our understanding of the interplay between oxidative stress during insulin resistance and cardiovascular risk, which could lead to novel therapeutic approaches for managing cardiovascular diseases. Further investigations are needed to assess the practical utility of these potential metabolites and understand the causal nature of their association with NT-proBNP in the etiology of insulin resistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app