Add like
Add dislike
Add to saved papers

A chemically adjustable BMP6-IL6 axis in mesenchymal stem cells drives acute myeloid leukemia cell differentiation.

Chemotherapy alone or in combination with allogeneic stem cell transplantation has been the standard of care for acute myeloid leukemia (AML) for decades. Leukemia relapse with limited treatment options remains the main cause of treatment failure. Therefore, an effective and safe approach to improve treatment outcomes is urgently needed for most AML patients. Mesenchymal stem cells (MSCs) have been reported to efficiently induce apoptosis and shape the fate of acute myeloid leukemia cells. Here, we identified LG190155 as a potent compound that enhances the antileukemia efficiency of MSCs. Pretreatment of MSCs with LG190155 significantly provoked differentiation in both AML patient-derived primary leukemia cells and AML cell lines and reduced the tumor burden in the AML mouse model. Using the quantitative proteomic technique, we discovered a pivotal mechanism that mediates AML cell differentiation, in which autocrine bone morphogenetic protein 6 (BMP6) in MSCs boosted IL-6 secretion and further acted on leukemic cells to trigger differentiation. Furthermore, the activity of the BMP6-IL6 axis was dramatically enhanced by activating vitamin D receptor (VDR) in MSCs. Our data illustrated an effective preactivated approach to reinforcing the antileukemia effect of MSCs, which could serve as an effective therapeutic strategy for AML.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app