Add like
Add dislike
Add to saved papers

Pericyte-Specific Secretome Profiling in Hypoxia Using TurboID in a Multicellular In Vitro Spheroid-Model.

Cellular communication within the brain is imperative for maintaining homeostasis and mounting effective responses to pathological triggers like hypoxia. However, a comprehensive understanding of the precise composition and dynamic release of secreted molecules has remained elusive, confined primarily to investigations using isolated monocultures. To overcome these limitations, we utilized the potential of TurboID, a non-toxic biotin ligation enzyme, to capture and enrich secreted proteins specifically originating from human brain pericytes in spheroid co-cultures with human endothelial cells and astrocytes. This approach allowed us to characterize the pericyte secretome within a more physiologically relevant multi-cellular setting encompassing the constituents of the blood-brain barrier (BBB). Through a combination of mass spectrometry and multiplex immunoassays, we identified a wide spectrum of different secreted proteins by pericytes. Our findings demonstrate that the pericytes secretome is profoundly shaped by their inter-cellular communication with other BBB-residing cells. Moreover, we identified substantial differences in the secretory profiles between hypoxic and normoxic pericytes. Mass spectrometry analysis showed that hypoxic pericytes in co-culture increase their release of signals related to protein secretion, mTOR signalling and the complement system, while hypoxic pericytes in monocultures showed an upregulation in proliferative pathways including G2M checkpoints, E2F- and Myc-targets. In addition, hypoxic pericytes show an upregulation of proangiogenic proteins such as VEGFA but display downregulation of canonical proinflammatory cytokines such as CXCL1, MCP-1, and CXCL6. Understanding the specific composition of secreted proteins in the multi-cellular brain microvasculature is crucial for advancing our knowledge of brain homeostasis and the mechanisms underlying pathology. This study has implications for the identification of targeted therapeutic strategies aimed at modulating microvascular signalling in brain pathologies associated with hypoxia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app