Add like
Add dislike
Add to saved papers

Understanding the depolarization phenomena in (1-x) Na0.5Bi0.5TiO3. (x) Ba0.85Ca0.15Ti0.90Zr0.10O3 solid solutions using in-situ temperature dependent Raman spectroscopy.

A decrease in depolarization temperature (Td) from 456 K to 352 K was observed with an increase in BCZT substitution in the NBT for the (1-x) Na0.5Bi0.5TiO3. (x) Ba0.85Ca0.15Ti0.90Zr0.10O3 solid solutions. A transition towards a higher ergodic state was elucidated with an increase in BCZT content that helped to reduce the free energy barrier, hence lesser thermal energy was required to depolarize the modified systems. Furthermore, a decrease in remnant polarization and coercive field, coupled with an increase in energy storage (Wstored) and efficiency (ƞ%) with higher BCZT content. In-situ temperature-dependent Raman spectra provide additional insights, highlighting the faster changes in phonon shifts and lifetimes corresponding to the A-O, B-O, and BO6 vibrations around the depolarization temperature (Td). The observed phase transformation to a P4bm phase at temperatures significantly higher than Td is substantiated by Raman shift and phonon lifetime variations in the modes associated with the A-O and B-O vibrations. The transitions can be understood as: at T~Td the Polar Nano Regions (PNRs) start to appear due to weakening of bonds, T>Td all the long-range ferroelectric domains transform to PNRs converting the material to a fully ergodic state, and at much higher temperatures (T>>Td) the R3c PNRs vanish and P4bm PNRs appear.&#xD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app