Add like
Add dislike
Add to saved papers

Eosinophil-activating Semiconducting Polymer Nanoparticles for Cancer Photo-immunotherapy.

Eosinophils are important immune effector cells that affect T cell-mediated antitumor immunity. However, the low frequency and restrained activity of eosinophils restricted the development of cancer immunotherapies. We herein report an eosinophil-activating semiconducting polymer nanoparticle (SPNe) to improve photodynamic tumor immunogenicity, modulate eosinophil chemotaxis, and reinvigorate T-cell immunity for activated cancer photo-immunotherapy. SPNe is composed of an amphiphilic semiconducting polymer and a dipeptidyl peptidase 4 (DPP4) inhibitor sitagliptin via a 1O2-cleavable thioketal linker. Upon localized NIR photoirradiation, SPNe can generate 1O2 to elicit immunogenic cell death of tumors and induce specific activation of sitagliptin. The subsequent inhibition of DPP4 increases intratumoral CCL11 levels to promote eosinophil chemotaxis and activation. SPNe-mediated photo-immunotherapy synergized with immune checkpoint blockade greatly promotes tumor infiltration and activation of both eosinophils and T cells, effectively inhibiting tumor growth and metastasis. Thus, this study presents a generic polymeric nanoplatform to modulate specific immune cells for precision cancer immunotherapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app