Add like
Add dislike
Add to saved papers

A machine learning approach to predict in vivo skin growth.

Research Square 2024 April 19
Since their invention, tissue expanders, which are designed to trigger additional skin growth, have revolutionised many reconstructive surgeries. Currently, however, the sole quantitative method to assess skin growth requires skin excision. Thus, in the context of patient outcomes, a machine learning method which uses non-invasive measurements to predict in vivo skin growth and other skin properties, holds significant value. In this study, the finite element method was used to simulate a typical skin expansion protocol and to perform various simulated wave propagation experiments during the first few days of expansion on 1,000 individual virtual subjects. An artificial neural network trained on this dataset was shown to be capable of predicting the future skin growth at 7 days (avg. R 2 = 0.9353 ) as well as the subject-specific shear modulus ( R 2 = 0.9801 ), growth rate ( R 2 = 0.8649 ), and natural pre-stretch ( R 2 = 0.9783 ) with a very high degree of accuracy. The method presented here has implications for the real-time prediction of patient-specific skin expansion outcomes and could facilitate the development of patient-specific protocols.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app