Add like
Add dislike
Add to saved papers

NHC-CDI Ligands Boost Multicarbon Production in Electrocatalytic CO 2 Reduction by Increasing Accumulated Charged Intermediates and Promoting *CO Dimerization on Cu.

Copper-based materials exhibit significant potential as catalysts for electrochemical CO2 reduction, owing to their capacity to generate multicarbon hydrocarbons. The molecular functionalization of Cu electrodes represents a simple yet powerful strategy for improving the intrinsic activity of these materials by favoring specific reaction pathways through the creation of tailored microenvironments around the surface active sites. However, despite its success, comprehensive mechanistic insights derived from experimental techniques are often limited, leaving the active role of surface modifiers inconclusive. In this work, we show that N -heterocyclic carbene-carbodiimide-functionalized Cu catalysts display a remarkable activity for multicarbon product formation, surpassing bare Cu electrodes by more than an order of magnitude. These hybrid catalysts operate efficiently using an electrolyzer equipped with a gas diffusion electrode, achieving a multicarbon product selectivity of 58% with a partial current density of ca. -80 mA cm-2 . We found that the activity for multicarbon product formation is closely linked to the surface charge that accumulates during electrocatalysis, stemming from surface intermediate buildup. Through X-ray photoelectron spectroscopy, we elucidated the role of the molecular additives in altering the electronic structure of the Cu electrodes, promoting the stabilization of surface CO. Additionally, in situ Raman measurements established the identity of the reaction intermediates that accumulate during electrocatalysis, indicating preferential CO binding on Cu step sites, known for facilitating C-C coupling. This study underscores the significant potential of molecular surface modifications in developing efficient electrocatalysts for CO2 reduction, highlighting surface charge as a pivotal descriptor of multicarbon product activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app