Add like
Add dislike
Add to saved papers

Effectiveness of Intelligent Control Strategies in Robot-Assisted Rehabilitation - A Systematic Review.

This review aims to provide a systematic analysis of the literature focused on the use of intelligent control systems in robotics for physical rehabilitation, identifying trends in recent research and comparing the effectiveness of intelligence used in control, with the aim of determining important factors in robot-assisted rehabilitation and how intelligent controller design can improve them. Seven electronic research databases were searched for articles published in the years 2015 - 2022 with articles selected based on relevance to the subject area of intelligent control systems in rehabilitation robotics. It was found that the most common use of intelligent algorithms for control is improving traditional control strategies with optimization and learning techniques. Intelligent algorithms are also commonly used in sensor output mapping, model construction, and for various data learning purposes. Experimental results show that intelligent controllers consistently outperform non-intelligent controllers in terms of transparency, tracking accuracy, and adaptability. Active participation of the patients and lowered interaction forces are consistently mentioned as important factors in improving the rehabilitation outcome as well as the patient experience. However, there are limited examples of studies presenting experimental results with impaired participants suffering limited range of motion, so the effectiveness of therapy provided by these systems is often difficult to quantify. A lack of universal evaluation criteria also makes it difficult to compare control systems outside of articles which use their own comparison criteria.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app