Add like
Add dislike
Add to saved papers

Association Between Sleep Quality and Deep Learning-Based Sleep Onset Latency Distribution Using an Electroencephalogram.

To evaluate sleep quality, it is necessary to monitor overnight sleep duration. However, sleep monitoring typically requires more than 7 h, which can be inefficient in terms of data size and analysis. Therefore, we proposed to develop a deep learning-based model using a 30 sec sleep electroencephalogram (EEG) early in the sleep cycle to predict sleep onset latency (SOL) distribution and explore associations with sleep quality (SQ). We propose a deep learning model composed of a structure that decomposes and restores the signal in epoch units and a structure that predicts the SOL distribution. We used the Sleep Heart Health Study public dataset, which includes a large number of study subjects, to estimate and evaluate the proposed model. The proposed model estimated the SOL distribution and divided it into four clusters. The advantage of the proposed model is that it shows the process of falling asleep for individual participants as a probability graph over time. Furthermore, we compared the baseline of good SQ and SOL and showed that less than 10 minutes SOL correlated better with good SQ. Moreover, it was the most suitable sleep feature that could be predicted using early EEG, compared with the total sleep time, sleep efficiency, and actual sleep time. Our study showed the feasibility of estimating SOL distribution using deep learning with an early EEG and showed that SOL distribution within 10 min was associated with good SQ.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app