Add like
Add dislike
Add to saved papers

Attention-based Temporal Graph Representation Learning for EEG-based Emotion Recognition.

Due to the objectivity of emotional expression in the central nervous system, EEG-based emotion recognition can effectively reflect humans' internal emotional states. In recent years, convolutional neural networks (CNNs) and recurrent neural networks (RNNs) have made significant strides in extracting local features and temporal dependencies from EEG signals. However, CNNs ignore spatial distribution information from EEG electrodes; moreover, RNNs may encounter issues such as exploding/vanishing gradients and high time consumption. To address these limitations, we propose an attention-based temporal graph representation network (ATGRNet) for EEG-based emotion recognition. Firstly, a hierarchical attention mechanism is introduced to integrate feature representations from both frequency bands and channels ordered by priority in EEG signals. Second, a graph convolutional neural network with top-k operation is utilized to capture internal relationships between EEG electrodes under different emotion patterns. Next, a residual-based graph readout mechanism is applied to accumulate the EEG feature node-level representations into graph-level representations. Finally, the obtained graph-level representations are fed into a temporal convolutional network (TCN) to extract the temporal dependencies between EEG frames. We evaluated our proposed ATGRNet on the SEED, DEAP and FACED datasets. The experimental findings show that the proposed ATGRNet surpasses the state-of-the-art graph-based mehtods for EEG-based emotion recognition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app