Add like
Add dislike
Add to saved papers

Pyridinium-Yne Click Polymerization: A Facile Strategy toward Functional Poly(Vinylpyridinium Salt)s with Multidrug-Resistant Bacteria Killing Ability.

Polymeric materials with antibacterial properties hold great promise for combating multidrug-resistant bacteria, which pose a significant threat to public health. However, the synthesis of most antibacterial polymers typically involves complicated and time-consuming procedures. In this study, we demonstrate a simple and efficient strategy for synthesizing functional poly(vinylpyridinium salt)s via pyridinium-yne click polymerization. This click polymerization could proceed with high atom economy under mild conditions without any external catalyst, yielding soluble and thermally stable poly(vinylpyridinium salt)s with satisfactory molecular weights and well-defined structures in excellent yields. Additionally, the incorporation of luminescent units such as fluorene, tetraphenylethylene, and triphenylamine into the polymer backbone confers excellent aggregation-enhanced emission properties upon the resulting polymers, rendering them suitable for bacterial staining. Moreover, the existence of pyridinium salt imparts intrinsic antibacterial activity against multidrug-resistant bacteria to the polymers, enabling them to effectively inhibit wound bacterial infection and significantly expedite the healing process. This work not only provides an efficient method to prepare antibacterial polymers, but also opens up the possibility of various applications of polymers in healthcare and other antibacterial fields.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app