Add like
Add dislike
Add to saved papers

Biological Performance of Hexadeca-Substituted Metal Phthalocyanine/Reduced Graphene Oxide Nanobioagents.

This study presents a tetra-substituted phthalonitrile derivative, namely, diethyl 2-(3,4-dicyano-2,5-bis(hexyloxy)-6-(4-(trifluoromethoxy)phenoxy)phenyl)malonate ( a ), cyclotetramerizing in the presence of some metal salts. The resultant hexadeca-substituted metal phthalocyanines [M= Co, Zn, InCl)] ( b - d ) were used for the modification of reduced graphene oxide for the first time. The effect of the phthalonitrile/metal phthalocyanines on biological features of reduced graphene oxide (rGO) was extensively examined by the investigation of antioxidant, antimicrobial, DNA cleavage, cell viability, and antibiofilm activities of nanobioagents ( 1 - 4 ). The results were compared with those of unmodified rGO (nanobioagent 5 ), as well. Modification of reduced graphene oxide with the synthesized compounds improved its antioxidant activity. The antioxidant activities of all the tested nanobioagents also enhanced as the concentration increased. The antibacterial activities of all the nanobioagents improved by applying the photodynamic therapeutic (PDT) method. All the phthalonitrile/phthalocyanine-based nanobioagents (especially phthalocyanine-based nanocomposites) exhibited DNA cleavage activities, and complete DNA fragmentation was observed for nanobioagents ( 1 - 4 ) at 200 mg/L. They can be used as potent antimicrobial and antimicrobial photodynamic therapy agents as well as Escherichia coli microbial cell inhibitors. As a result, the prepared nanocomposites can be considered promising candidates for biomedicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app