Add like
Add dislike
Add to saved papers

A Method to Reduce Tension Differences in Pull/Push Manipulation for a Robot in Fluorescence Emission-Guided Surgical Microscopy.

MOTIVATION: A fluorescence emission-guided microscope used to monitor the outcome of cancer removal surgery is highly effective when employing a manipulator to motorize and switch the observation direction. It is necessary to minimize the alignment of looper tension between the stands for pull/push to change the direction of the manipulator and reduce the error rate caused by tension differences. This paper presents a method to minimize the error rate of looper tension between the stands.

METHODS: \The looper is inserted between the stands of the manipulator to minimize the difference in tension and make the stress on the pull and push of the looper constant. The constant stress allows the manipulator to move stably in left/right, up/down, and left/right movements, which will be effective for full-camera observation and close-up shots of the end effector.

RESULTS: Reducing the tolerance for differences in the manipulator's looper tension (angle and tension) is crucial. When the input value of the looper tension angle is 50°, the output should closely match 50°. Consequently, the measured response has a tolerance of ±49.98%, resulting in an error rate of .02% (1/50th level).

CONCLUSION: A method is proposed to minimize the error rate of the manipulator's looper tension in a robot-based fluorescence emission-guided microscope used to observe the status of cancer surgery. As a result, a stable manipulator with a minimal error rate can achieve a 3.986x magnification for close-up observation by switching between high and low orientations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app