Add like
Add dislike
Add to saved papers

Reprogramming the pancreatic cancer stroma and immune landscape by a silicasome nanocarrier delivering nintedanib, a protein tyrosine kinase inhibitor.

Nano Today 2024 Februrary
The prevailing desmoplastic stroma and immunosuppressive microenvironment within pancreatic ductal adenocarcinoma (PDAC) pose substantial challenges to therapeutic intervention. Despite the potential of protein tyrosine kinase (PTK) inhibitors in mitigating the desmoplastic stromal response and enhancing the immune milieu, their efficacy is curtailed by suboptimal pharmacokinetics (PK) and insufficient tumor penetration. To surmount these hurdles, we have pioneered a novel strategy, employing lipid bilayer-coated mesoporous silica nanoparticles (termed "silicasomes") as a carrier for the delivery of Nintedanib. Nintedanib, a triple PTK inhibitor that targets vascular endothelial growth factor, platelet-derived growth factor and fibroblast growth factor receptors, was encapsulated in the pores of silicasomes via a remote loading mechanism for weak bases. This innovative approach not only enhanced pharmacokinetics and intratumor drug concentrations but also orchestrated a transformative shift in the desmoplastic and immune landscape in a robust orthotopic KRAS-mediated pancreatic carcinoma (KPC) model. Our results demonstrate attenuation of vascular density and collagen content through encapsulated Nintedanib treatment, concomitant with significant augmentation of the CD8+ /FoxP3+ T-cell ratio. This remodeling was notably correlated with tumor regression in the KPC model. Strikingly, the synergy between encapsulated Nintedanib and anti-PD-1 immunotherapy further potentiated the antitumor effect. Both free and encapsulated Nintedanib induced a transcriptional upregulation of PD-L1 via the extracellular signal-regulated kinase (ERK) pathway. In summary, our pioneering approach involving the silicasome carrier not only improved antitumor angiogenesis but also profoundly reshaped the desmoplastic stromal and immune landscape within PDAC. These insights hold excellent promise for the development of innovative combinatorial strategies in PDAC therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app