Add like
Add dislike
Add to saved papers

Design and Position Control of a Bionic Joint Actuated by Shape Memory Alloy Wires.

Biomimetics 2024 March 31
Bionic joints are crucial for robotic motion and are a hot topic in robotics research. Among various actuators for joints, shape memory alloys (SMAs) have attracted significant interest due to their similarity to natural muscles. SMA exhibits the shape memory effect (SME) based on martensite-to-austenite transformation and its inverse, which allows for force and displacement output through low-voltage heating. However, one of the main challenges with SMA is its limited axial stroke. In this article, a bionic joint based on SMA wires and a differential pulley set structure was proposed. The axial stroke of the SMA wires was converted into rotational motion by the stroke amplification of the differential pulley set, enabling the joint to rotate by a sufficient angle. We modeled the bionic joint and designed a proportional-integral (PI) controller. We demonstrated that the bionic joint exhibited good position control performance, achieving a rotation angle range of -30° to 30°. The proposed bionic joint, utilizing SMA wires and a differential pulley set, offers an innovative solution for enhancing the range of motion in SMA actuated bionic joints.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app