Add like
Add dislike
Add to saved papers

Super-Klein Tunneling in a Black-Phosphorus-Based N-P Junction Modulated by Linearly Polarized Light.

We investigate the role of the black-phosphorus-based n-p (BP-np) junction modulated by linearly polarized light (LPL) in governing the quantum transport behaviors. Following the analysis of the band structures, we find that the LPL can adjust the gap between the conduction and valence bands by reducing the impact of momentum mismatch caused by the band gap. In addition, LPL can also eliminate the angle dependence of transmission. This means that for BP with a fixed band gap, the transmission-forbidden region can be reduced and the transmission probability can be increased by applying LPL modulation of the band gap to achieve all-angle perfect transmission, i.e., super-Klein tunneling (SKT). Our investigation also found that the SKT is robust to different incident energies, resulting in a larger conductance platform. These findings could be useful for the development and application of optical-like electronic devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app