Add like
Add dislike
Add to saved papers

Dynamics of Single-Cell Protein Covariation during Epithelial-Mesenchymal Transition.

Physiological processes, such as the epithelial-mesenchymal transition (EMT), are mediated by changes in protein interactions. These changes may be better reflected in protein covariation within a cellular cluster than in the temporal dynamics of cluster-average protein abundance. To explore this possibility, we quantified proteins in single human cells undergoing EMT. Covariation analysis of the data revealed that functionally coherent protein clusters dynamically changed their protein-protein correlations without concomitant changes in the cluster-average protein abundance. These dynamics of protein-protein correlations were monotonic in time and delineated protein modules functioning in actin cytoskeleton organization, energy metabolism, and protein transport. These protein modules are defined by protein covariation within the same time point and cluster and, thus, reflect biological regulation masked by the cluster-average protein dynamics. Thus, protein correlation dynamics across single cells offers a window into protein regulation during physiological transitions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app