Add like
Add dislike
Add to saved papers

Redox Behaviour and Redox Potentials of Dyes in Aqueous Buffers and Protic Ionic Liquids.

Organic dyes hold promise as inexpensive electrochemically-active building blocks for new renewable energy technologies such as redox-flow batteries and dye-sensitised solar cells, especially if they display high oxidation and/or low reduction potentials in cheap, non-flammable solvents such as water or protic ionic liquids. Systematic computational and experimental characterisation of a representative selection of acidic and basic dyes in buffered aqueous solutions and propylammonium formate confirm that quinoid-type mechanisms impart electrochemical reversibility for the majority of systems investigated, including quinones, fused tricyclic heteroaromatics, indigo carmine and some aromatic nitrogenous species. Conversely, systems that generate long-lived radical intermediates -- arylmethanes, hydroquinones at high pH, azocyclic systems -- tend to display irreversible electrochemistry, likely undergoing ring-opening, dimerisation and/or disproportionation reactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app