Add like
Add dislike
Add to saved papers

Size-induced exchange bias in single-phase CoO nanoparticles.

Nanotechnology 2024 April 19
The tuning of exchange bias (EB) in nanoparticles has garnered significant attention due to its diverse range of applications. Here, we demonstrate EB in single-phase CoO nanoparticles, where two magnetic phases naturally emerge as the crystallite size decreases from 34.6 ± 0.8 to 10.8 ± 0.9 nm. The Néel temperature ( T N ) associated with antiferromagnetic ordering decreases monotonically with the reduction in crystallite size, highlighting the significant influence of size effects. The 34.6 nm nanoparticles exhibit magnetization irreversibility between zero-field cooled (ZFC) and field-cooled (FC) states below T N . With further reduction in size this irreversibility appears well above T N , resulting in the absence of true paramagnetic regime which indicates the occurnace of an additional magnetic phase. The frequency-dependent ac-susceptibility in 10.8 nm nanoparticles suggests slow dynamics of disordered surface spins above T N , coinciding with the establishment of long-range order in the core. The thermoremanent magnetization (TRM) and iso-thermoremanent magnetization (IRM) curves suggest a core-shell structure: the core is antiferromagnetic, and the shell consists of disordered surface spins causing ferromagnetic interaction. Hence, the EB in these CoO nanoparticles results from the exchange coupling between an antiferromagnetic core and a disordered shell that exhibits unconventional surface spin characteristics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app