Add like
Add dislike
Add to saved papers

Filler Mixed Into Adhesives Does Not Necessarily Improve Their Mechanical Properties.

Operative Dentistry 2024 April 18
OBJECTIVES: To investigate the influence of filler type/loading on the micro-tensile fracture strength (μTFS) of adhesive resins, as measured 'immediately' upon preparation and after 1-week water storage ('water-stored').

METHODS: The morphology and particle-size distribution of three filler particles, referred to as 'Glass-S' (Esschem Europe), 'BioUnion' (GC), and 'CPC_Mont', were correlatively characterized by SEM, TEM, and particle-size analysis. These filler particles were incorporated into an unfilled adhesive resin ('BZF-29unfilled', GC) in different concentrations to measure the 'immediate' μTFS. After 1-week water storage, the 'water-stored' μTFS of the experimental particle-filled adhesive resins with the most optimum filler loading, specific for each filler type, was measured. In addition, the immediate and water-stored μTFS of the adhesive resins of three experimental two-step universal adhesives based on the same resin matrix but varying for filler type/loading, coded as 'BZF-21' (containing silica and bioglass), 'BZF-29' (containing solely silica), and 'BZF-29_hv' (highly viscous with a higher silica loading than BZF-29), and of the adhesive resins of the gold-standard adhesives OptiBond FL ('Opti-FL', Kerr) and Clearfil SE Bond 2 ('C-SE2', Kuraray Noritake) was measured along with that of BZF-29unfilled (GC) serving as control/reference. Statistics involved one-way and two-way ANOVA followed by post-hoc multiple comparisons (α<0.05).

RESULTS: Glass-S, BioUnion, and CPC_Mont represent irregular fillers with an average particle size of 8.5-9.9 μm. Adding filler to BZF-29unfilled decreased μTFS regardless of filler type/loading. One-week water storage reduced μTFS of all adhesive resins except BZF-21, with the largest reduction in μTFS recorded for BZF-29unfilled. Among the three filler types, the μTFS of the 30 wt% Glass-S and 20 wt% BioUnion filled adhesive resin was not significantly different from the μTFS of BZF-29unfilled upon water storage.

CONCLUSIONS: Adding filler particles into adhesive resin did not enhance its micro-tensile fracture strength but appeared to render it less sensitive to water storage as compared to the unfilled adhesive resin investigated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app