Add like
Add dislike
Add to saved papers

Microstructural investigation of morphology and kinetics of methane hydrate in the presence of tetrabutylammonium bromide: Insights for preservation and inhibition.

Developing highly efficient methane (CH4) hydrate storage methods and understanding the hydrate dissociation kinetics can contribute to advancing CH4 gas storage and transport. The effects of tetrabutylammonium bromide (TBAB) (a thermodynamic promoter) addition on the kinetics of CH4 hydrate were evaluated on the microscopic scale using synchrotron x-ray computed tomography (CT) and powder x-ray diffraction. Microscopic observations showed that a 5 wt. % TBAB solution facilitated the nucleation of CH4 hydrate owing to the initial growth of TBAB semi-clathrate hydrate particles. The CH4 hydrate crystals in the CH4 + TBAB hydrate sample were sponge-like with many internal pores and exhibited slightly enhanced self-preservation compared to the pure CH4 hydrate, both in the bulk and after pulverization to a fine powder. This study demonstrates the feasibility of controlling the rate of CH4 hydrate formation and preservation by using aqueous TBAB solutions in CH4 hydrate formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app