Add like
Add dislike
Add to saved papers

Probing the Electrode-Electrolyte Interface of Sodium/Glyme-Based Battery Electrolytes.

Sodium-ion batteries (NIBs) are promising systems for large-scale energy storage solutions; yet, further enhancements are required for their commercial viability. Improving the electrochemical performance of NIBs goes beyond the chemical description of the electrolyte and electrode materials as it requires a comprehensive understanding of the underlying mechanisms that govern the interface between electrodes and electrolytes. In particular, the decomposition reactions occurring at these interfaces lead to the formation of surface films. Previous work has revealed that the solvation structure of cations in the electrolyte has a significant influence on the formation and properties of these surface films. Here, an experimentally validated molecular dynamics study is performed on a 1 M NaTFSI salt in glymes of different lengths placed between two graphite electrodes having a constant bias potential. The focus of this study is on describing the solvation environment around the sodium ions at the electrode-electrolyte interface as a function of glyme chain length and applied potential. The results of the study show that the diglyme/TFSI system presents features at the interface that significantly differ from those of the triglyme/TFSI and tetraglyme/TFSI systems. These computational predictions are successfully corroborated by the experimentally measured capacitance of these systems. In addition, the dominant solvation structures at the interface explain the electrochemical stability of the system as they are consistent with cyclic voltammetry characterization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app