Add like
Add dislike
Add to saved papers

Tuning the CO 2 Reduction Selectivity of an Immobilized Molecular Ag Complex beyond CO.

Inorganic Chemistry 2024 April 17
The electrochemical reduction of carbon dioxide (CO2 ) to produce fuels and chemicals has garnered significant attention. However, achieving control over the selectivity of the resulting products remains a challenging task, particularly within molecular systems. In this study, we employed a molecular silver complex immobilized on graphitized mesoporous carbon (GMC) as a catalyst for converting CO2 into CO, achieving an impressive selectivity of over 90% at -1.05 V vs RHE. Notably, the newly formed silver nanoparticles emerged as the active sites responsible for this high CO selectivity rather than the molecular system. Intriguingly, the introduction of copper ions into the restructured Ag-nanoparticle-decorated carbon altered the product selectivity. At -1.1 V vs RHE in 0.1 M KCl, we achieved a high C2 selectivity of 75%. Furthermore, not only the Ag-Cu bimetallic nanoparticle but also the small-sized Ag-Cu nanocluster decorated over GMC was proposed as active sites during catalytic reactions. Our straightforward approach offers valuable insights for fine-tuning the product selectivity of immobilized molecular systems, extending beyond C1 products.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app