Add like
Add dislike
Add to saved papers

Bayesian tensor network structure search and its application to tensor completion.

Tensor network (TN) has demonstrated remarkable efficacy in the compact representation of high-order data. In contrast to the TN methods with pre-determined structures, the recently introduced tensor network structure search (TNSS) methods automatically learn a compact TN structure from the data, gaining increasing attention. Nonetheless, TNSS requires time-consuming manual adjustments of the penalty parameters that control the model complexity to achieve better performance, especially in the presence of missing or noisy data. To provide an effective solution to this problem, in this paper, we propose a parameters tuning-free TNSS algorithm based on Bayesian modeling, aiming at conducting TNSS in a fully data-driven manner. Specifically, the uncertainty in the data corruption is well-incorporated in the prior setting of the probabilistic model. For TN structure determination, we reframe it as a rank learning problem of the fully-connected tensor network (FCTN), integrating the generalized inverse Gaussian (GIG) distribution for low-rank promotion. To eliminate the need for hyperparameter tuning, we adopt a fully Bayesian approach and propose an efficient Markov chain Monte Carlo (MCMC) algorithm for posterior distribution sampling. Compared with the previous TNSS method, experiment results demonstrate the proposed algorithm can effectively and efficiently find the latent TN structures of the data under various missing and noise conditions and achieves the best recovery results. Furthermore, our method exhibits superior performance in tensor completion with real-world data compared to other state-of-the-art tensor-decomposition-based completion methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app