Add like
Add dislike
Add to saved papers

Application of the Born Model to Describe Salt Partitioning in Hydrated Polymers.

ACS Macro Letters 2024 April 17
The classic Born model can be used to predict salt partitioning properties observed in hydrated polymers, but there are often significant quantitative discrepancies between these predictions and the experimental data. Here, we use an updated version of the Born model, reformulated to account for the local environment and mesh size of a hydrated polymer, to describe previously published NaCl, KCl, and LiCl partitioning properties of model cross-linked poly(ethylene glycol) diacrylate polymers. This reformulated Born model describes the influence of polymer structure (i.e., network mesh size and its relationship with water content) and external salt concentration on salt partitioning in the polymers with a significant improvement relative to the classic Born model. The updated model most effectively describes NaCl partitioning properties and provides an additional fundamental understanding of salt partitioning processes, for NaCl, KCl, and LiCl, in hydrated polymers that are of interest for a variety of environmental and biological applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app