Add like
Add dislike
Add to saved papers

Identification of an Optimized Clinical Development Candidate from Cilagicin, an Antibiotic That Evades Resistance by Dual Polyprenyl Phosphate Binding.

Cilagicin is a dual polyprenyl phosphate binding lipodepsipeptide antibiotic with strong activity against clinically relevant Gram-positive pathogens while evading antibiotic resistance. Cilagicin showed high serum binding that reduced its in vivo efficacy. Cilagicin-BP, which contains a biphenyl moiety in place of the N-terminal myristic acid found on cilagicin, showed reduced serum binding and increased in vivo efficacy but decreased potency against some pathogens. Here, we manipulated the acyl tail and the peptide core of cilagicin to identify an optimized collection of structural features that maintain potent antibiotic activity against a wide range of pathogens in the presence of serum. This led to the identification of the optimized antibiotic dodecacilagicin, which contains an N-terminal dodecanoic acid. Dodecacilagicin exhibits low MICs against clinically relevant pathogens in the presence of serum, retains polyprenyl phosphate binding, and evades resistance development even after long-term antibiotic exposure, making dodecacilagicin an appealing candidate for further therapeutic development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app