Add like
Add dislike
Add to saved papers

Small-scale medical oxygen production unit using PSA technology: modeling and sensitivity analysis.

This study presents a solid approach for small-scale medical oxygen production unit using pressure swing adsorption (PSA) technology. The objective of this research is to develop a mathematical model and conduct a sensitivity analysis to optimise the design and operating parameters of the PSA system. Based on the simulation results, an optimal set of operational parameter values has been obtained for the PSA beds. The result shows that the binary system produced oxygen with a purity of 94%, at the adsorption pressure 1 bar and temperature of 308K. The findings demonstrate the effectiveness of the proposed small-scale PSA system for medical oxygen production, highlighting the impact of key parameters and emphasising the need for careful optimisation. The findings serve as a guide for the design and operation of small-scale PSA systems, enabling healthcare facilities to produce their own medical oxygen, thereby improving accessibility and addressing critical shortages during emergencies. Future research may explore the integration of large scale PSA units in hospitals in Morocco.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app