Add like
Add dislike
Add to saved papers

Effect of Anchoring Dynamics on Proton-Coupled Electron Transfer in the Ru(bda) Coordination Oligomer on a Graphitic Surface.

ChemPlusChem 2024 April 17
The oligomeric ruthenium-based water oxidation catalyst, Ru(bda), is known to be experimentally anchored on graphitic surfaces through CH-π stacking interactions between the auxiliary bda ([2,2'-bipyridine]-6,6'-dicarboxylate) ligand bonded to ruthenium and the hexagonal rings of the surface. This anchoring provides control over their molecular coverage and enables efficient catalysis of water oxidation to dioxygen. The oligomeric nature of the molecule offers multiple anchoring sites at the surface, greatly enhancing the overall stability of the hybrid catalyst-graphitic surface anode through dynamic bonding. However, the impact of this dynamic anchoring on the overall catalytic mechanism is still a topic of debate. In this study, a crucial proton-coupled electron transfer event in the catalytic cycle is investigated using DFT-based molecular dynamics simulations plus metadynamics. The CH-π stacking anchoring plays a critical role not only in stabilizing this hybrid system but also in facilitating the proton-coupled electron transfer event with possible vibronic couplings between the anchoring bonds motion and charge fluctuations at the catalyst - graphitic surface interface. Furthermore, this computational investigation displays the presence of a quartet spin state intermediate that can lead to the experimentally observed and thermodynamically more stable doublet spin state.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app