Add like
Add dislike
Add to saved papers

Heterogeneous Structure, Mechanisms of Counterion Exchange, and the Spacer Salt Effect in Complex Molten Salt Mixtures Including LaCl 3 .

Complex molten chloride salt mixtures of uranium, magnesium, and sodium are top candidates for promising nuclear energy technologies to produce electricity based on molten salt reactors. From a local structural perspective, LaCl3 is similar to UCl3 and hence a good proxy to study these complex salt mixtures. As fission products, lanthanide salts and their mixtures are also very important in their own right. This article describes from an experimental and theory perspective how very different the structural roles of MgCl2 and NaCl are in mixtures with LaCl3 . We find that, whereas MgCl2 becomes an integral part of multivalent ionic networks, NaCl separates them. In a recent article ( J. Am. Chem. Soc. 2022 , 144 , 21751-21762) we have called the disruptive behavior of NaCl "the spacer salt effect". Because of the heterogeneous nature of these salt mixtures, there are multiple structural motifs in the melt, each with its particular free energetics. Our work identifies and quantifies these; it also elucidates the mechanisms through which Cl- ions exchange between Mg2+ -rich and La3+ -rich environments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app