Journal Article
Review
Add like
Add dislike
Add to saved papers

Exploring the impact of various reducing agents on Cu nanocluster synthesis.

The synthesis of copper (Cu) nanoclusters (NCs) has experienced significant advancements in recent years. Despite the exploration of metal NCs dating back almost two decades, challenges specific to Cu NC synthesis arise from the variable oxidation states and heightened reactivity of intermediate Cu complexes, distinguishing it from its analogous counterparts. In this study, we present a comprehensive overview of this newly evolving research domain, focusing on the synthetic aspects. We delve into various factors influencing the synthesis of Cu NCs, with specific emphasis on the role of reducing agents. The impact of the reducing agent is particularly pivotal in this synthetic process, ultimately influencing the formation of model M(0)-containing NCs, which are less readily accessible in the context of Cu NCs. We anticipate that this frontier article will pave the way for accelerated research in the field of Cu NCs. By aiding in the selection of specific reaction conditions and reducing agents, we believe that this work will contribute to a faster-paced exploration of Cu NCs, further advancing our understanding and applications in this exciting area of nanomaterial research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app