Add like
Add dislike
Add to saved papers

Range and sensitivity of 17O nuclear spin-lattice relaxation as a probe of aqueous electrolyte dynamics.

The study of electrolytic solutions is of relevance in many research fields, ranging from biophysics, materials, and colloid science to catalysis and electrochemistry. The dependence of solution dynamics on the nature of electrolytes and their concentrations has been the subject of many experimental and computational studies, yet it remains challenging to obtain a full understanding of the factors that govern solution behavior. Here, we provide additional insights into the behavior of aqueous solutions of alkali chlorides by combining 17O relaxation data with diffusion and viscosity data and contrast their behavior with 1H nuclear magnetic resonance relaxation data. The main findings are that 17O relaxation correlates well with viscosity data but not with diffusion data, while 1H relaxation correlates with neither. Certain ionic trends match known ion-specific series behavior, especially at high concentrations. Notably, we also examine the ranges of the interactions and conclude that the majority of the effects are tied to local water reorientation dynamics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app