Add like
Add dislike
Add to saved papers

Umbrella-Shaped Amphiphiles: Internal Alkylation of an Aromatic Micelle and Its Impact on Cavity Features.

Angewandte Chemie 2024 April 16
To develop new hybrid micelles with alkyl/polyaromatic core-shell structures, we synthesized umbrella-shaped amphiphiles bearing a bent anthracene dimer with a linear alkyl chain (i.e., octyl and hexadecyl groups). The amphiphiles quantitatively assemble into spherical micelles (~2-3 nm in core diameter), possessing an alkylated cavity surrounded by a polyaromatic framework, in water. The alkylation significantly enhances the stability of the micellar structures against dilution (up to 9 μM) and heat (up to >120 ºC). The highly condensed hexadecyl core of the hybrid micelle, as indicated by solvatochromic guest probes, displays increased uptake ability toward large alkylated metallodyes. Interestingly, efficient uptake of aromatic macrocycles (i.e., [n]cycloparaphenylenes) by the present micelle provides pseudorotaxane-shaped host-guest composites with high emissivity (ФF = up to 35%). Internal multi-alkylation of an aromatic micelle can thus successfully enhance its assembly stability/guest uptake functions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app