Add like
Add dislike
Add to saved papers

Surgeon Upper Extremity Kinematics During Error and Error-Free Retropubic Trocar Passage.

INTRODUCTION AND HYPOTHESIS: Surgeon kinematics play a significant role in the prevention of patient injury. We hypothesized that elbow extension and ulnar wrist deviation are associated with bladder injury during simulated midurethral sling (MUS) procedures.

METHODS: We used motion capture technology to measure surgeons' flexion/extension, abduction/adduction, and internal/external rotation angular time series for shoulder, elbow, and wrist joints. Starting and ending angles, minimum and maximum angles, and range of motion (ROM) were extracted from each time series. We created anatomical multibody models and applied linear mixed modeling to compare kinematics between trials with versus without bladder penetration and attending versus resident surgeons. A total of 32 trials would provide 90% power to detect a difference.

RESULTS: Out of 85 passes, 62 were posterior to the suprapubic bone and 20 penetrated the bladder. Trials with versus without bladder penetration were associated with more initial wrist dorsiflexion (-27.32 vs -9.03°, p = 0.01), less final elbow flexion (39.49 vs 60.81, p = 0.03), and greater ROM in both the wrist (27.48 vs 14.01, p = 0.02), and elbow (20.45 vs 12.87, p = 0.04). Wrist deviation and arm pronation were not associated with bladder penetration. Compared with attendings, residents had more ROM in elbow flexion (14.61 vs 8.35°, p < 0.01), but less ROM in wrist dorsiflexion (13.31 vs 20.33, p = 0.02) and arm pronation (4.75 vs 38.46, p < 0.01).

CONCLUSIONS: Bladder penetration during MUS is associated with wrist dorsiflexion and elbow flexion but not internal wrist deviation and arm supination. Attending surgeons exerted control with the wrist and forearm, surgical trainees with the elbow. Our findings have direct implications for MUS teaching.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app