Add like
Add dislike
Add to saved papers

Structural Models for a Series of Allosteric Inhibitors of IGF1R Kinase.

bioRxiv 2024 April 7
The allosteric inhibition of Insulin-like Growth Factor Receptor 1 Kinase (IGF1RK) is a potential strategy to overcome selectivity barriers in targeting receptor tyrosine kinases. We constructed structural models of a series of 12 indole-butyl-amine derivatives which have been reported as allosteric inhibitors of IGF1RK. We further studied dynamics and interactions of each inhibitor in the allosteric pocket via all-atom explicit-solvent molecular dynamics (MD) simulations. We discovered that a bulky carbonyl substitution at the R1 indole ring is structurally unfavorable for inhibitor binding in the IGF1RK allosteric pocket. Moreover, we found that the most potent derivative (termed C11) acquires a distinct conformation, forming an allosteric pocket channel with better shape complementarity and interactions with the receptor. In addition to a hydrogen bonding interaction with V1063, the cyano derivative C11 forms a stable hydrogen bond with M1156, which is responsible for its unique binding conformation in the allosteric pocket. Our findings show that the position of chemical substituents at the R1 indole ring with different pharmacophore features influences molecular interactions and binding conformations of the indole-butyl-amine derivatives, hence dramatically affecting their potencies. Our results provide a structural framework for the design of allosteric inhibitors with improved affinities and specificities against IGF1RK.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app