Add like
Add dislike
Add to saved papers

A Remarkable Impact of pH on the Thermo-Responsive Properties of Alginate-Based Composite Hydrogels Incorporating P2VP-PEO Micellar Nanoparticles.

Polymers 2024 March 25
A heterograft copolymer with an alginate backbone, hetero-grafted by polymer pendant chains displaying different lower critical solution temperatures (LCSTs), combined with a pH-responsive poly(2-vinyl pyridine)- b -poly(ethylene oxide) (P2VP- b -PEO) diblock copolymer forming micellar nanoparticles, was investigated in aqueous media at various pHs. Due to its thermo-responsive side chains, the copolymer forms hydrogels with a thermo-induced sol-gel transition, above a critical temperature, Tgel (thermo-thickening). However, by lowering the pH of the medium in an acidic regime, a remarkable increase in the elasticity of the formulation was observed. This effect was more pronounced in low temperatures (below Tgel ), suggesting secondary physical crosslinking, which induces significant changes in the hydrogel thermo-responsiveness, transforming the sol-gel transition to soft gel-strong gel. Moreover, the onset of thermo-thickening shifted to lower temperatures followed by the broadening of the transition zone, implying intermolecular interactions between the uncharged alginate backbone with the PNIPAM side chains, likely through H-bonding. The shear-thinning behavior of the soft gel in low temperatures provides injectability, which allows potential applications for 3D printing. Furthermore, the heterograft copolymer/nanoparticles composite hydrogel, encapsulating a model hydrophobic drug in the hydrophobic cores of the nanoparticles, was evaluated as a pH-responsive drug delivery system. The presented tunable drug delivery system might be useful for biomedical potential applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app