Add like
Add dislike
Add to saved papers

Proceedings of the 2023 Viral Clearance Symposium, Session 2: Viral Clearance Strategy and Case Studies.

This session deals with the rational design of viral clearance studies for biopharmaceuticals including recombinant proteins such as monoclonal antibodies and, as new in scope of the symposium, also viral clearance for adeno-associated viral (AAV) vectors. For recombinant proteins, large datasets were accumulated over the last decades and are intended to be used for accelerated product process development and streamlining of viral clearance studies. How to utilize prior knowledge in viral clearance validation and how it can be used in a risk assessment tool to decide whether additional virus clearance studies are necessary during product development is being addressed by three of the presentations of this session. This also includes an a priori intended design and generation of validation data for a new kind of detergent such as CG-110, to build up a platform dataset to be used as prior knowledge in future marketing application. Another presentation investigates the virus removal mechanism of a newly developed hydrophobic interaction chromatography (HIC) resin and demonstrates for highly hydrophobic antibodies appropriate reduction for a retrovirus and impurities in a defined process range in contrast to the moderate to poor virus reduction of recent HIC resins. The last two presentations deal with virus clearance approaches for AAV, which will become mandatory with approval of the ICH Q5A revision. Appropriate virus removal and virus inactivation procedures can be implemented into the manufacturing processes of AAV vectors including viral filtration, viral inactivation (e.g., heat inactivation), affinity chromatography, and anion-exchange chromatography with which it seems possible to achieve a good clearance for helper and also adventitious viruses. The heat treatment step can be even a robust step for adenovirus helper inactivation for AAV products when product characteristics and process conditions are understood.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app