Add like
Add dislike
Add to saved papers

Synthesis of rhenium disulfide nanodots exhibiting pH-dependent fluorescence and phosphorescence for anticounterfeiting and hazardous gas detection.

The synthesis and characterization of ReS2 nanodots (NDs) are detailed, by highlighting their structure, morphological, and optical properties. ReS2 NDs were synthesized using NH4 ReO4 as a rhenium source, thiourea as a sulfur source, and N-acetyl cysteine as a capping agent. The synthesis involved the hydrothermal reaction of these precursors, leading to the nucleation and growth of ReS2 NDs. Characterization techniques including transmission electron microscopy, energy dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy confirmed the formation of ReS2 NDs with a spherical morphology, crystalline structure, and rich sulfur sites. The fluorescence behavior of ReS2 NDs was found to be influenced by the solution pH, with fluorescence intensity increasing with rising pH values. This pH-dependent fluorescence response was attributed to the dissociation of functional groups and the subsequent impact on the excited-state proton transfer process. The fluorescence intensity of ReS2 NDs showed a correlation with solution pH, enabling pH detection from 3.0 to 12.5 with an interval of 0.5 pH unit. Additionally, the incorporation of ReS2 NDs into a polyvinyl alcohol (PVA) matrix resulted in pH-sensitive phosphorescence, offering a new avenue for pH sensing. The strong interaction between PVA and ReS2 NDs was proposed to enhance phosphorescence intensity and trigger a blue shift in the phosphorescent peak at high pH. The ReS2 NDs/PVA-deposited filter paper exhibited pH-sensitive fluorescence and phosphorescence, which could be utilized as unique identifiers or authentication markers. Moreover, the ReS2 NDs/PVA-deposited filter paper showed potential for discriminating between hydrogen chloride and ammonia, based on their distinct fluorescence and phosphorescence responses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app