Add like
Add dislike
Add to saved papers

Influence of Selective Carbon 1s Excitation on Auger-Meitner Decay in the ESCA Molecule.

Two-dimensional spectral mapping is used to visualize how resonant Auger-Meitner spectra are influenced by the site of the initial core-electron excitation and the symmetry of the core-excited state in the trifluoroethyl acetate molecule (ESCA). We observe a significant enhancement of electron yield for excitation of the COO 1s → π* and CF3 1s → σ* resonances unlike excitation at resonances involving the CH3 and CH2 sites. The CF3 1s → π* and CF3 1s → σ* resonance spectra are very different from each other, with the latter populating most valence states equally. Two complementary electronic structure calculations for the photoelectron cross section and Auger-Meitner intensity are shown to effectively reproduce the site- and state-selective nature of the resonant enhancement features. The site of the core-electron excitation and the respective final state hole locality increase the sensistivity of the photoelectron signal at specific functional group sites. This showcases resonant Auger-Meitner decay as a potentially powerful tool for selectively probing structural changes at specific functional group sites of polyatomic molecules.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app