Journal Article
Review
Add like
Add dislike
Add to saved papers

Detection of intrinsic transcription termination sites in bacteria: consensus from hairpin detection approaches.

We compare the WebGeSTer and INtrinsic transcription TERmination hairPIN (INTERPIN) databases used for intrinsic transcription termination (ITT) site prediction in bacteria. The former deploys inverted nucleotide repeat detection for identification of RNA hairpin, while the latter a pair-potential function - the hairpin energy score evaluation being identical for both. We find INTERPIN more sensitive than WebGeSTer with about 6% and 51% additional predictions for ITTs in chromosomal and plasmid operons, respectively. INTERPIN hairpins are relatively shorter in length with ungapped stem, and even located in AT-rich segments, compared to GC-rich longer hairpins with a gapped stem in WebGeSTer. The GC%, length, and energy score from INTERPIN transcription units (TUs) are best inter-correlated while the lowest energy single hairpins from WebGeSTer, considered suitable for ITT, being the worst. Around 72% TUs from the two databases overlap, and ∼60% of all alternate ITT sites downstream of TUs overlap, of which 65% are cluster hairpins. This helps highlight hairpin features that can be used to identify termination sites in bacteria across different prediction methods. Overall, the pair-potential-function-based hairpins screened appear to be more consistent with the kinetic and thermodynamics processes of ITT known to date.Communicated by Ramaswamy H. Sarma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app